Thursday, 15 September 2016

Teamwork, Mission Models, and Project Ideas

Today we did four things:

1) Homework review.  Most people had read the blog and watched the video, and Neshaya won the draw for the homework prize.  Congratulations, Neshaya!



2) Worked on defining what a team is, does, sounds like, and does not do.  We then tried to use what we learned in a teamwork exercise.  The exercise was to get the gummy worm through the gummy ring and into the plastic cup using nothing but paperclips.  The idea was to work  in teams of two and find the best way to solve the problem.

3) Built several of the mission models for this year's competition.  Congratulations to Alyssa, Lais, Hannah, Nick, and Neshaya.

4) Programmed the Shark Transport mission.  Congratulations Tara, Macy, Lily, and Olivia!

Homework for Monday:

Pick an animal and think about how it interacts with humans.  Hopefully you did this last week. What's new for this week is to talk to an expert about how those interactions might be improved.  For example, dogs' natural instinct is protect their owners and their property, which is part of the reason some people own them.  Their instinct, unfortunately, leads them to attack mail carriers, or to run into the road to bark at cars and get run over.  Is there a way their interactions with mail carriers and cars could be improved?  The secret word for next week, by the way, is Molly, which is the most common female dog name in the English language.

Tuesday, 13 September 2016

Ecole Catholique Cathedrale FLL 2016

Welcome back, Comets!  We've got a lot of work to do this season and not a lot of time to do it. The competition will be held November 19 at Duncan MacArthur Hall (Queen's West Campus).

We'll be using this blog again this season to keep you informed about news, tips, progress, dates, and so on during the season.  Please check back regularly to make sure you get all the necessary information!  Each week there will be a secret word contained in the week's blog post.  Please show up each week knowing the secret word for the week.  The word for this week is Flipper (a TV dolphin who helps people.)

Remember that the First Lego League competition consists of three main parts: 1) core values, 2) the project, and 3) the game.  The core values define how we work together as a team, and how we interact with other teams.  The project is a team research effort in a specific area, with the team required to develop and share a solution to a particular problem.  The game involves the design of a robot to complete as many missions as possible on a specially designed board.

Most participants find the robot component the most fun, but remember that the overall score is based on all three components, with each counting for roughly one third.  Your robot could complete every mission in the game successfully and your team could still finish last overall if you don't do well on the project and don't demonstrate the core values.

To get up to speed quickly on the core values, the project and the game, please check out the videos below:

Overview:

Project:



Robot Game:

The video, game rules, and project descriptions are also linked to from the First Lego League Challenge Page  



Sunday, 22 November 2015

Congratulations, Comet Warriors!

The Comets had a great tournament at MacArthur Hall yesterday!  It was a long day, from 7:45am until 4:30pm and despite some ups and down things went very well overall.  After three very well done presentations things started going downhill as the robot didn't really want to perform.

Comet Warriors

The team pulled together, however, and worked through the problems one round at a time.  They ended with a tournament-high score of 458, giving them the Robot Performance award.  In addition they won first prize for their research project.  They'll be off to the provincial championships in Oshawa on Jan. 16th.  Congratulations!

Some more photos of the day:




Tuesday, 17 November 2015

Progress to Date and Tournament

We've gotten a lot done since the last post!  We've shared our project idea with several experts and gotten some good feedback.  Dr. Linton liked the spinning magnet idea and thought it could work.  When we asked why nobody was using the ideas we found patents for he said it's probably because they cost too much.  Silicon that's 99.9999999% costs $25/kg.  Silicon that's 98% pure costs $4/kg.  So to be practical a solution needs to cost less than $25 per kilogram of awesome silicon, or less than $4 per kilogram of pretty good silicon.  Dr. Loock also liked the idea, and he too wondered about the cost.  We'll need to figure out how much ours solution costs to see if it's practical.

Dr Tenney also liked the idea, though silicon wafers aren't his specialty.  He did say that we could probably save ourselves a drill and a bunch of magnets by using an induction motor instead.  He sent a video of someone who made one with a lego controller and some non-lego pieces.  It basically gives the same effect as spinning magnets, but without anything moving.  See the video below:



Since Dr. Linton and Dr. Tenney are both named John, the secret word for the week is "John".

We've also made good progress on the robot programming.  Olivia spent 6 hours working on it on Sunday.  The robot now does the Careers, Valuables, Compost, Windshield, Plastic Bag, Turtle, Truck, and Methane missions for a total of 600 points.  We have a few more missions that are close to working and may be able to get almost 800!

We've also made good progress on the t-shirts.  They are supposed to arrive today and get printed by Thursday.  Let's hope there are no delays.

We've made good progress on the presentation as well.  Things we still need are: a song!  And practice!  We'll need to practice this a lot before the competition and there's very little time left.  Who wants to write a song?

We're meeting with Team HiTech (Ella Hsu's team) at Olivia's house after school tomorrow (Weds.).  We're hoping to do our presentations for each other, and try out our robots in competition.

We have another expert to speak with on Friday at 11:30.  Her name is Dr. Lauren Linton and she's the Deputy Director of the Tufts University Innovation Institute.  They focus on turning ideas into products by involving people with a lot of different skill sets, and may have advice for us on how to make our idea better.

We've emailed the tournament schedule to everyone.  Please arrive Saturday morning no later than 7:45 at MacArthur Hall (corner of Sir John A MacDonald Blvd. and Union St.)

Friday, 6 November 2015

Research on separation based on filtering, density, and magnetism

Can a filter separate the silicon particles from the silicon carbide particles?

Tried: Coffee filter.  Everything went through.
Tried screen filter: nothing went through.

Olivia looked up particle sizes and found silicon  averaged 1 micron, and silicon carbide averaged 10 microns.  But the bigger silicon particles were bigger than the smaller silicon carbide particles.  So there was an overlap of  about 50% of the silicon with the silicon dioxide.  We migh get half of the silicon if we used a filter of 1 micron or less.



Conclusion: Filter will recover 50% of the silicon at best.

Can silicon and silicon carbide be separated by density?

Neshaya did a report on separating silicon and silicon carbide based on density.  She found that silicon was less dense than silicon carbide.  She also found that there were several liquids with densities between the two, including bromal, bromophorm, and sodium polytungstate.  There are a number of patents in patents.google.com that describe separating wire saw slurry based on densities of silicon and silicon carbide.  According to Dr. Linton, nobody is using these techniques, so we should see why not.

Can a magnet separate silicon particles from silicon carbide particles?

Searched Youtube for: "magnet repels conductors"

Found video on aluminum being attracted by magnets, and glass being repelled.



Found video on water being repelled by a magnet.  Repulsion was very small.  To eliminate friction, water was placed in a test tube inserted in styrofoam floating in a tub of water.



Found video on magnetic top floating above a sheet of copper.  Top only floated when it was spinning.  Top had six magnets alternating north and south poles.



Found a video on spinning magnets being used to sort aluminum at a recycling center.  Spinning magnets popped aluminum off of a conveyor carrying rubber, plastic, etc.  According to the video "Eddy Currents" produce the magnetic force that repels the aluminum.  The word for this week is, you guessed it, "Eddy".



Built a spinning magnetic top using a car polisher, tape, and magnets.  Placed it under a plastic tray with tin foil in it but it didn't really work.


Tried again with a square of piece of aluminum, and the aluminum spun.

Tried it on aluminum floating on styrofoam in water, and it worked.

Checked with saran wrap between the magnets and the aluminum to make sure the air wasn't spinning the aluminum.  Still worked.

Tried with the aluminum removed to make sure the magnets weren't spinning the styrofoam or the water.  Nothing spun.

Conclusion: Spinning magnets can make a sheet of aluminum spin.

Questions: Does it work with silicon?  Does it work with silicon powder?  Does it not work with silicon carbide?

If it works with silicon and not silicon carbide, could it be used to separate the two?  If so, how?

Tuesday, 27 October 2015

Research Project - Separating Things

Good work today, folks!  First things first: there’s some homework we need done for next week.

Homework:

Amy/Olivia/Tara: Investigate separating silicon from silicon carbide based on particle size.  Amy, could you ask your dad for his expert opinion?  What are the sizes of the particles in silicon wire-saw slurry? Are there filtering techniques for separating particles of those sizes?  Is anybody already doing this?  Are there existing methods for silicon recovery from wire-saw slurry?  Maybe you could search Google, including patents.google.com and books.google.com.

Neshaya: Investigate separating silicon carbide from silicon based on density.  What are the densities of silicon and silicon carbide?  Is there a liquid with a density in between the densities of silicon and silicon carbide, that would allow one to float and the other to sink?  Is anybody already doing this?  Are there existing methods for silicon recovery from wire-saw slurry?  Maybe you could search Google, including patents.google.com and books.google.com.

Erika/Jadzia: Investigate separating silicon from silicon carbide based on magnetic properties.  Dr Linton suggested that because silicon is more conductive than silicon carbide, maybe you could separate it with a magnet.  Could you look up repelling conductors with a magnet?  Youtube and Google could be good places to look.

Nick: Investigate separating silicon from silicon carbide based on melting points. What are their melting temperatures?  If one melts at a lower temperature than the other maybe we could strain the solid out of the liquid like we do with coffee.  Or maybe the one that melts last would float or sink in the one that melts first, and the liquid could be poured out or drained.

Amy/Olivia: We need a timeline, pricing, and a decision on t-shirts. 

Tara/Amy: We need a Comet Warriors logo for the shirts.

As background to the homework, here’s a summary of what we did today:

We announced that Neshaya’s letter to the parent council got us $701.00!  Quite a letter and great job Neshaya!  The word for this week is “Neshaya”.

We reviewed the schedule and saw that we had only four weeks left before the tournament, including this week.  We’ve made good progress on the robot so far so we’re not too worried there.  We’re doing well on the core values and did another exercise on a) learning what those values are, and b) putting them to use in a card sorting exercise.  Remember: UPS!

We’re way behind on our research project so today we worked a lot on that.  The project is salvaging silicon sawdust, which is created when wafers are sliced from blocks of silicon.  Last week Olivia identified some things we might need for the project and we ordered them.  Based on Dr. Linton’s description, the problem is to separate silicon sawdust from the grit used to cut it, and the liquid it is mixed in.  The grit he said is used to cut it is “silicon carbide”, and the liquid it’s mixed in is “polyethylene glycol”.

Based on that description we ordered:
a) Silicon wafers
b) Powdered silicon
c) Silicon carbide dust
d)  Polyethylene glycol

Today we made a mixture of silicon, silicon carbide, and polyethylene glycol in a bottle to see what we had to work on.  It looked like a bottle of dirty water.

To get some ideas of how to separate things in general, we tried some experiments on a few more familiar mixtures. 

Separating Sawdust, Iron Filings and Sand

Sawdust, Sand, and Iron Filings

We started with a mixture of sawdust, iron filings, and sand and brainstormed ideas on how to separate them.  The ideas were:

Nick: Sift the mixture, or burn the sawdust.

Erika: Put the mixture in water to make the sawdust float.

Jadzia: Shake the mixture to make the iron and sand sink to the bottom.

Olivia: Use a magnet to pull out the iron filings.

We tried a combination of the different ideas.  We put the mixture in water, and the sand and iron sank to the bottom.  We then dragged a magnet along the bottom and pulled out the iron.  That left the sawdust floating, the sand at the bottom of the tank, and the iron stuck to the magnet.  Problem solved!

Separating Golf Balls, Ping Pong Balls and Mochi Ice Cream Balls



Mochi Ice Cream, Ping Pong, and Golf Balls


We then looked at a second problem: Separating a mixture of ping pong balls, golf balls, and mochi ice cream balls.  We brainstormed again and the ideas were:

Olivia: Heat them to make the ice cream melt

Nick: Give them to squirrels, who would eat the ice cream balls

Neshaya: Raffle them off and separate them by price

Olivia: Bounce them to see which bounce the highest

Nick: Separate them by color.

Olivia: Run them over grates with different size holes and the ping pong balls would fall through the smallest holes, the golf balls through the next larger holes, and the mocha ice cream through the biggest holes.

We again tried a combination of ideas: we ate the ice cream, and bounced the ping pong and golf balls.  The golf balls bounced highest, and if we bounced both types of ball on the floor the golf balls could bounce into a garbage can and the ping pong balls wouldn’t.

Our Research Project


Silicon, Silicon Carbide, and Polyethylene Glycol


We talked about how we came up with the different separation ideas. We had looked at the differences in the things we needed to separate: size, density, weight, melting point, color, magnetic properties, elasticity, color, smell.  We call these things "properties" or "attributes".

We decided to investigate the properties of silicon, silicon carbide, and polyethylene glycol and see what differences in properties we could use to separate them.  As described above in the Homework section, people volunteered to study certain properties and see if we might be able to solve our problem based on those properties, and to see if others had tried or were already using similar methods.

Let’s see what we can learn by next week and bring the information to our Tuesday meeting.  Thanks!

Monday, 19 October 2015

Homework Due on Tuesday

All right folks, we had a good meeting on Thursday to:

    a) pick a team name,
    b) create a team logo,
    c) decide how to raise money,
    d) pick a project.

We divided into two groups of five, and had each group come up with two possible names.  We then voted on the proposals and decided on "Comet Warriors" with 5 votes out of 10.  So item (a) is done.  Congratulations Comet Warriors!

That left items b, c, and d.

For (b) we decided to let anyone who wanted to create a logo, and we would vote to pick our favorite design tomorrow (Tuesday).  If you have a proposal for a logo, please bring it with you tomorrow.

For (c) we came up with two plans for raising money.  Amy and Georgia are going to organize a Haunted House for the school's Family Dance night.  For tomorrow they're going to develop a plan describing where the haunted house will be located, what the hours of operation will be, who will staff it during the dance, how it will be laid out, what items they need.  Thank you Amy and Georgia!

The second fundraising plan is to ask the Parent Council for money.  Our Communications Manager, Nashaya, volunteered to write a letter to the Parent Council on behalf of the team, listing our expenses for the season and asking them if they could contribute.  Thank you Nashaya!

For (d) we identified four contenders for e-waste research projects: i) heavy metals, ii) silicon dust, iii) cell phones, and iv) computers.  We asked those most interested in each project to prepare a presentation for Tuesday describing the current state of handling that type of e-waste, and what innovation(s) they thought we might try as an approach to reducing, recycling, or re-purposing it.

The volunteers were:

Jadzia - Heavy metals
Olivia - Silicon sawdust
Lyla - Cell phones
Nick - Computers

We look forward to your presentations tomorrow!

And the secret work for this week is Gnoljan (a Swedish word pronounced nol-yan, and meaning "comet").  Actually that's not true.  It's a word I made up using the initials of the people who volunteered to have something done by tomorrow.  See you then!